EE 435
Homework 3 Solutions
Spring 2023

Problem 1

Part A
Begin by drawing the small-signal model of the Samswrong quarter circuit.

Solving for the gain, $\frac{V_{O U T}}{V_{I N}}$, allows for $g_{M E Q}$ and $g_{O E Q}$ to be easily identified. This is only one strategy for finding $g_{M E Q}$ and $g_{O E Q}$. Start by writing a system of equations which can be solved for $V_{\text {OUT }}$ and $V_{I N}$.

$$
\begin{gathered}
\text { (1) } V_{\text {OUT }}\left(s C_{L}\right)+g_{m 2}\left(V_{I N}-V_{2}\right)+\left(V_{O U T}-V_{2}\right)\left(g_{o 2}\right) \\
=V_{\text {OUT }}\left(g_{o 2}+s C_{L}\right)+V_{I N}\left(g_{m 2}\right)+V_{2}\left(-g_{m 2}-g_{o 2}\right)=0 \\
\text { (2) } V_{2}\left(g_{o 1}+g_{m 1}\right)+\left(V_{2}-V_{O U T}\right)\left(g_{o 2}\right)-g_{m 2}\left(V_{I N}-V_{2}\right) \\
=V_{\text {OUT }}\left(-g_{o 2}\right)+V_{I N}\left(-g_{m 2}\right)+V_{2}\left(g_{o 1}+g_{m 1}+g_{o 2}+g_{m 2}\right)=0
\end{gathered}
$$

Solve Equation 1 for V_{2} :

$$
\text { (1.1) } V_{2}=\frac{V_{\text {OUT }}\left(g_{o 2}+s C_{L}\right)+V_{I N}\left(g_{m 2}\right)}{g_{m 2}+g_{o 2}}
$$

Substitute Equation 1.1 into Equation 2, then solve for $V_{\text {OUT }}$ in terms of $V_{I N}$:

$$
\begin{gathered}
-g_{o 2} V_{O U T}-g_{m 2} V_{I N}+\frac{\left(g_{o 1}+g_{m 1}+g_{o 2}+g_{m 2}\right)\left(V_{O U T}\left(g_{o 2}+s C_{L}\right)+g_{m 2} V_{I N}\right)}{g_{m 2}+g_{o 2}}=0 \\
\frac{V_{O U T}}{V_{I N}}=-\frac{g_{m 2} g_{o 1}+g_{m 2} g_{m 1}}{g_{o 2} g_{o 1}+s C_{L} g_{o 1}+g_{m 1} g_{o 2}+g_{m 1} s C_{L}+g_{o 2} s C_{L}+g_{m 2} s C_{L}} \\
A_{V}=-\frac{\frac{g_{m 2} g_{o 1}+g_{m 2} g_{m 1}}{\left(g_{o 1}+g_{m 1}+g_{o 2}+g_{m 2}\right)}}{s C_{L}+\frac{g_{o 2} g_{o 1}+g_{m 1} g_{o 2}}{\left(g_{o 1}+g_{m 1}+g_{o 2}+g_{m 2}\right)}}
\end{gathered}
$$

Recalling that $g_{m} \gg g_{o}$:

$$
\frac{V_{O U T}}{V_{I N}}=A_{V} \approx-\frac{\frac{g_{m 2} g_{m 1}}{g_{m 1}+g_{m 2}}}{s C_{L}+\frac{g_{m 1} g_{o 2}}{g_{m 1}+g_{m 2}}}
$$

From this, we can observe that $g_{M E Q}=\frac{g_{m 1} g_{m 2}}{g_{m 2}+g_{m 1}}$ and $g_{O E Q}=\frac{g_{m 1} g_{o 2}}{g_{m 2}+g_{m 1}}$.

Part B

By inspection, we can show that the circuit's output conductance, G_{0}, is $\frac{g_{m 4} g_{o 2}}{g_{m 4}+g_{m 2}}+\frac{g_{m 6} g_{o 8}}{g_{m 6}+g_{m 8}}$ and transconductance is simply $\frac{g_{m 2} g_{m 4}}{g_{m 2}+g_{m 4}}$. The amplifier's differential voltage gain and GBW are then:

$$
\begin{aligned}
A_{V} & =-\frac{\frac{g_{m 2} g_{m 4}}{g_{m 2}+g_{m 4}}}{\frac{g_{m 2} g_{o 4}}{g_{m 4}+g_{m 2}}+\frac{g_{m 8} g_{o 6}}{g_{m 6}+g_{m 8}}+s C_{L}} \\
G B & =\frac{\frac{g_{m 2} g_{m 4}}{g_{m 2}+g_{m 4}}}{C_{L}}=\frac{g_{m 2} g_{m 4}}{C_{L}\left(g_{m 2}+g_{m 4}\right)}
\end{aligned}
$$

Part C
Recall the following:

$$
g_{m}=\frac{2 I_{D Q}}{V_{E B Q}} \text { and } g_{o} \approx \lambda I_{D Q}
$$

Using this, we can find $G_{M E Q}$ and $G_{O E Q}$ in the practical parameter domain:

$$
\begin{gathered}
G_{M E Q}=\frac{\frac{2 I_{D Q 4}}{V_{E B 4}} * \frac{2 I_{D Q 2}}{V_{E B 2}}}{\frac{2 I_{D Q 4}}{V_{E B 4}}+\frac{2 I_{D Q 2}}{V_{E B 2}}}=\frac{\frac{4 I_{D Q}^{2}}{V_{E B 4} V_{E B 2}}}{\frac{2 I_{D Q}\left(V_{E B 2}+V_{E B 4}\right)}{V_{E B 4} V_{E B 2}}}=\frac{2 P}{\left(V_{D D}-V_{S S}\right)\left(V_{E B 2}+V_{E B 4}\right)} \\
G_{O E Q}=\frac{\lambda_{2} \lambda_{4} I_{D Q}^{2}}{\lambda_{2} I_{D Q}+\lambda_{4} I_{D Q}}+\frac{\lambda_{8} \lambda_{6} I_{D Q}^{2}}{\lambda_{8} I_{D Q}+\lambda_{6} I_{D Q}}=\frac{P}{\left(V_{D D}-V_{S S}\right)}\left(\frac{\lambda_{2} \lambda_{4}}{\left(\lambda_{2}+\lambda_{4}\right)}+\frac{\lambda_{8} \lambda_{6}}{\left(\lambda_{8}+\lambda_{6}\right)}\right)
\end{gathered}
$$

The DC gain and gain-bandwidth are as follows:

$$
\begin{gathered}
A_{D C}=\frac{G_{M E Q}}{S C_{L}+G_{O E Q}}=\frac{\frac{2 P}{\left(V_{D D}-V_{S S}\right)\left(V_{E B 2}+V_{E B 4}\right)}}{\frac{P}{\left(V_{D D}-V_{S S}\right)}\left(\frac{\lambda_{2} \lambda_{4}}{\left(\lambda_{2}+\lambda_{4}\right)}+\frac{\lambda_{8} \lambda_{6}}{\left(\lambda_{8}+\lambda_{6}\right)}\right)} \\
=\frac{2}{\left(V_{E B 2}+V_{E B 4}\right)\left(\frac{\lambda_{2} \lambda_{4}}{\left(\lambda_{2}+\lambda_{4}\right)}+\frac{\lambda_{8} \lambda_{6}}{\left(\lambda_{8}+\lambda_{6}\right)}\right)} \\
G B W=\frac{2 P}{C_{L}\left(V_{D D}-V_{S S}\right)\left(V_{E B 2}+V_{E B 4}\right)}
\end{gathered}
$$

Problem 2

Part A

Begin by determining the gain and gain-bandwidth of the reference op amp with current mirroring. Assume λ of all devices is $0.01 \mathrm{~V}^{-1}$:

$$
\begin{gathered}
A_{0}=\frac{2}{\left(\lambda_{1}+\lambda_{3}\right)} \frac{1}{V_{E B 1}}=\frac{2}{0.02} * \frac{1}{0.5}=200 \\
G B W=\frac{P}{\left(V_{D D}-V_{S S}\right) C_{L}} * \frac{1}{V_{E B 1}}=\frac{2 P}{\left(V_{D D}-V_{S S}\right) C_{L}}=\frac{2 \mathrm{~m}}{\left(V_{D D}-V_{S S}\right) C_{L}}
\end{gathered}
$$

Now find the same two specs for the Samswrong amplifier:

$$
\begin{gathered}
A_{0}=\frac{2}{\left(V_{E B 2}+V_{E B 4}\right)\left(\frac{\lambda_{2} \lambda_{4}}{\left(\lambda_{2}+\lambda_{4}\right)}+\frac{\lambda_{8} \lambda_{6}}{\left(\lambda_{8}+\lambda_{6}\right)}\right)}=\frac{2}{(0.15+0.15)(0.01)}=\frac{2}{(0.15+0.15)(0.01)} \\
=666.66 \\
G B W=\frac{2 P}{C_{L}\left(V_{D D}-V_{S S}\right)\left(V_{E B 2}+V_{E B 4}\right)}=\frac{6.666 P}{\left(V_{D D}-V_{S S}\right) C_{L}}=\frac{6.666 \mathrm{~m}}{\left(V_{D D}-V_{S S}\right) C_{L}}
\end{gathered}
$$

Yes, improvements are seen in both the amplifier gain and gain-bandwidth.

Part B

The comparison of the two structures is not fair. For the comparison to be fair, they should be designed with the same $V_{E B}$ and power budgets. Giving one structure a lower $V_{E B}$ than another creates an unfair comparison.

Part C

To perform a fair comparison, compare the GBW and open-loop gain expressions in symbolic form, with substituting variables in. Start by comparing the gains.

$$
\frac{2}{\left(\lambda_{1}+\lambda_{3}\right)} \frac{1}{V_{E B 1}} v s . \frac{2}{\left(V_{E B 2}+V_{E B 4}\right)\left(\frac{\lambda_{2} \lambda_{4}}{\left(\lambda_{2}+\lambda_{4}\right)}+\frac{\lambda_{8} \lambda_{6}}{\left(\lambda_{8}+\lambda_{6}\right)}\right)}
$$

If we simplify by letting all device λ s equal each other:

$$
\frac{1}{\lambda} \frac{1}{V_{E B 1}} v s . \frac{2}{\left(V_{E B 2}+V_{E B 4}\right) \lambda}
$$

If $V_{E B 2}=V_{E B 1}=V_{E B 4}$, the two circuits have the same gain. Now compare the GBWs:

$$
\frac{P}{\left(V_{D D}-V_{S S}\right) C_{L}} * \frac{1}{V_{E B 1}} \text { vs. } \frac{2 P}{C_{L}\left(V_{D D}-V_{S S}\right)\left(V_{E B 2}+V_{E B 4}\right)}
$$

The GBW of the Samswrong circuit is less than the GBW of the reference circuit.

Problem 3

Part A

Modified Wilson Current Mirror

Wilson Mirror counterpart

Part B

To find the differential voltage gain, $A_{d}(s)$, start by finding $G_{M E Q}$ for the structure. By inspection, this can be seen to be $g_{m 1}$. Mathematically, we can see why this is true by noting that the expression for $V_{O U T}$ in terms of V_{d} will inevitably end up in the following form at some point:

$$
V_{\text {OUT }}(x x x)+V_{d} g_{m 1}=0
$$

Where $x x x$ is a collection of terms. To turn this into $A_{d}(s)$, the $V_{d} g_{m 1}$ term must first be subtracted from each side, and the V_{d} then needs to be divided. This results in $g_{m 1}$ on the right side of the expression, making it the only transconductance that matters for $G_{M E Q}$.

Now, find $G_{O E Q}$. By inspection, we can see that the output conductance of the quarter circuit is $g_{o 1}\left(\frac{g_{o 3}}{g_{m 3}}\right)$. This is in parallel with the output conductance of the counterpart circuit. The counterpart circuit conductance is $g_{07}\left(\frac{g_{05}}{g_{m 5}}\right)$. Thus, $G_{O E Q}=g_{o 1}\left(\frac{g_{03}}{g_{m 3}}\right)+g_{07}\left(\frac{g_{o 5}}{g_{m 5}}\right)$.

The differential gain of the amplifier is $A_{d}(s)=\frac{G_{M E Q}}{G_{O E Q}}=-\frac{g_{m 1}}{s C_{L}+g_{o 1}\left(\frac{g_{O 3}}{g_{m 3}}\right)+g_{07}\left(\frac{g_{05}}{g_{m 5}}\right)}$.

Part C
The DC gain is $=-\frac{g_{m 1}}{g_{01}\left(\frac{g_{o 3}}{g_{m 3}}\right)+g_{07}\left(\frac{g_{05}}{g_{m 5}}\right)}$ since this is the gain when $s=0$. The gain-bandwidth can be found by multiplying the gain by the bandwidth. The bandwidth can be found by solving for s when the denominator is zero:

$$
\begin{gathered}
B W=\frac{g_{o 1}\left(\frac{g_{o 3}}{g_{m 3}}\right)+g_{07}\left(\frac{g_{o 5}}{g_{m 5}}\right)}{C_{L}} \\
G B W=-\frac{g_{m 1}}{C_{L}}
\end{gathered}
$$

Part D
The gain-bandwidth is unchanged from the telescopic cascode op amp. The gain is also unchanged.

Problem 4

Part A

Part B
If $V_{D D}=2 V$ and $P=10 \mathrm{~mW}$, then the total current consumed by the amplifier must be $I_{N E T}=$ 5 mA . One third of this current is used by the differential pair. This means we know the current and $V_{E B}$ of all devices, so we can find the width-length of each device as follows:

$$
\frac{W}{L}=\frac{2 I_{D}}{\mu C_{o x} V_{E B}^{2}}
$$

Assuming $\mu_{n} C_{o x}=100 \mu A / v^{2}$ and $\mu_{p} C_{o x}=33 \mu A / v^{2}$ (per the paragraph at the top of the homework assignment:

Device	Width-Length
M1 and M2	416.67
M3 and M4	2525
M5 and M6	3787
M7 and M8	416.6
M9 and M10	416.6
M11	833.33

Part C

Recall from lecture:

$$
\begin{aligned}
& A_{V 0} \approx \frac{2 \theta}{V_{E B 1}\left(\left(\theta \lambda_{1}+\lambda_{5}\right) \lambda_{3} V_{E B 3}+(1-\theta) \lambda_{9} \lambda_{7} V_{E B 9}\right)} \\
&=\frac{2 * \frac{1}{3}}{\left.0.2\left(\left(\frac{1}{3}\right) 0.01+0.01\right) 0.01 * 0.2+\left(1-\frac{1}{3}\right) 0.01 * 0.01 * 0.2\right)}
\end{aligned}
$$

$$
G B=\frac{P \theta}{2 V_{D D} C_{L} V_{E B 1}}=\frac{0.00416}{C_{L}}
$$

If $C_{L}=10 \mathrm{pF}, G B=416.67 \mathrm{Mrad} / \mathrm{sec}$

Problem 5

Part A

Part B
We can create a convenient practical-parameter domain design space by first expressing the current through the two-port model:

$$
I_{T}=V_{1}\left(g_{m 1}+g_{m 2}\right)+V_{D S}\left(g_{o 2}+g_{o 1}\right) \approx V_{1}\left(g_{m 1}+g_{m 2}\right)
$$

Let's express the small-signal parameters in terms of volatges and process parameters:

$$
I_{T} \approx V_{1}\left(\mu C_{o x} \frac{W_{1}}{L_{1}} V_{E B 1}+\mu C_{o x} \frac{W_{2}}{L_{2}} V_{E B 2}\right)
$$

Where $V_{E B 1}=V_{1}-V_{T 1}$ and $V_{E B 2}=V_{1}-V_{T 2}$.
So, a reasonable design domain is $\left\{V_{1}, \frac{W_{1}}{L_{1}}, \frac{W_{2}}{L_{2}}\right\}$.
Part C

Part D
Recall that gain and gain-bandwidth, in general, can be expressed as follows:

$$
\begin{gathered}
A_{V}=\frac{G_{M E Q}}{G_{O E Q}} \\
G B W=\frac{G_{M E Q}}{C_{L}}
\end{gathered}
$$

We can show that $G_{M E Q}=g_{m 1}+g_{m 2}$ and that $G_{O E Q}=\left(g_{o 1}+g_{o 2}\right)+\left(g_{o 5}+g_{o 6}\right)$. Therefore:

$$
\begin{gathered}
A_{V}=\frac{\frac{g_{m 1}+g_{m 2}}{2}}{g_{01}+g_{o 2}+g_{o 5}+g_{o 6}} \\
G B W=\frac{g_{m 1}+g_{m 2}}{2 C_{L}}
\end{gathered}
$$

Problem 6

Part A
If the tail current source is ideal and all bias voltages are appropriately handled with a CMFB circuit, then the amplifier will have no common-mode gain.

Part B

Part C
The maximum current that can flow through either branch is $I_{T} / 2$. Because slew rate is simply $\frac{d V}{d t}$, we can now say that the rising and falling slew rate of the amplifier is:

$$
S R^{+}=S R^{-}=\frac{I_{T}}{2 C_{L}}=25 M \frac{\mathrm{~V}}{\mathrm{~s}}=25 \mathrm{~V} / \mu \mathrm{s}
$$

